3.3.38 \(\int \frac {x (a+b \text {ArcSin}(c x))^2}{\sqrt {d-c^2 d x^2}} \, dx\) [238]

Optimal. Leaf size=146 \[ \frac {2 a b x \sqrt {1-c^2 x^2}}{c \sqrt {d-c^2 d x^2}}+\frac {2 b^2 \left (1-c^2 x^2\right )}{c^2 \sqrt {d-c^2 d x^2}}+\frac {2 b^2 x \sqrt {1-c^2 x^2} \text {ArcSin}(c x)}{c \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{c^2 d} \]

[Out]

2*b^2*(-c^2*x^2+1)/c^2/(-c^2*d*x^2+d)^(1/2)+2*a*b*x*(-c^2*x^2+1)^(1/2)/c/(-c^2*d*x^2+d)^(1/2)+2*b^2*x*arcsin(c
*x)*(-c^2*x^2+1)^(1/2)/c/(-c^2*d*x^2+d)^(1/2)-(a+b*arcsin(c*x))^2*(-c^2*d*x^2+d)^(1/2)/c^2/d

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 146, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {4767, 4715, 267} \begin {gather*} -\frac {\sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{c^2 d}+\frac {2 a b x \sqrt {1-c^2 x^2}}{c \sqrt {d-c^2 d x^2}}+\frac {2 b^2 x \sqrt {1-c^2 x^2} \text {ArcSin}(c x)}{c \sqrt {d-c^2 d x^2}}+\frac {2 b^2 \left (1-c^2 x^2\right )}{c^2 \sqrt {d-c^2 d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x*(a + b*ArcSin[c*x])^2)/Sqrt[d - c^2*d*x^2],x]

[Out]

(2*a*b*x*Sqrt[1 - c^2*x^2])/(c*Sqrt[d - c^2*d*x^2]) + (2*b^2*(1 - c^2*x^2))/(c^2*Sqrt[d - c^2*d*x^2]) + (2*b^2
*x*Sqrt[1 - c^2*x^2]*ArcSin[c*x])/(c*Sqrt[d - c^2*d*x^2]) - (Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)/(c^2*d
)

Rule 267

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 4715

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSin[c*x])^n, x] - Dist[b*c*n, Int[
x*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 - c^2*x^2]), x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 4767

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(
p + 1)*((a + b*ArcSin[c*x])^n/(2*e*(p + 1))), x] + Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p
], Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*
d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rubi steps

\begin {align*} \int \frac {x \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {d-c^2 d x^2}} \, dx &=-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d}+\frac {\left (2 b \sqrt {1-c^2 x^2}\right ) \int \left (a+b \sin ^{-1}(c x)\right ) \, dx}{c \sqrt {d-c^2 d x^2}}\\ &=\frac {2 a b x \sqrt {1-c^2 x^2}}{c \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d}+\frac {\left (2 b^2 \sqrt {1-c^2 x^2}\right ) \int \sin ^{-1}(c x) \, dx}{c \sqrt {d-c^2 d x^2}}\\ &=\frac {2 a b x \sqrt {1-c^2 x^2}}{c \sqrt {d-c^2 d x^2}}+\frac {2 b^2 x \sqrt {1-c^2 x^2} \sin ^{-1}(c x)}{c \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d}-\frac {\left (2 b^2 \sqrt {1-c^2 x^2}\right ) \int \frac {x}{\sqrt {1-c^2 x^2}} \, dx}{\sqrt {d-c^2 d x^2}}\\ &=\frac {2 a b x \sqrt {1-c^2 x^2}}{c \sqrt {d-c^2 d x^2}}+\frac {2 b^2 \left (1-c^2 x^2\right )}{c^2 \sqrt {d-c^2 d x^2}}+\frac {2 b^2 x \sqrt {1-c^2 x^2} \sin ^{-1}(c x)}{c \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 86, normalized size = 0.59 \begin {gather*} \frac {\left (-1+c^2 x^2\right ) (a+b \text {ArcSin}(c x))^2+2 b \sqrt {1-c^2 x^2} \left (a c x+b \sqrt {1-c^2 x^2}+b c x \text {ArcSin}(c x)\right )}{c^2 \sqrt {d-c^2 d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x*(a + b*ArcSin[c*x])^2)/Sqrt[d - c^2*d*x^2],x]

[Out]

((-1 + c^2*x^2)*(a + b*ArcSin[c*x])^2 + 2*b*Sqrt[1 - c^2*x^2]*(a*c*x + b*Sqrt[1 - c^2*x^2] + b*c*x*ArcSin[c*x]
))/(c^2*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.15, size = 316, normalized size = 2.16

method result size
default \(-\frac {a^{2} \sqrt {-c^{2} d \,x^{2}+d}}{c^{2} d}+b^{2} \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c^{2} x^{2}-i \sqrt {-c^{2} x^{2}+1}\, x c -1\right ) \left (\arcsin \left (c x \right )^{2}-2+2 i \arcsin \left (c x \right )\right )}{2 c^{2} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i \sqrt {-c^{2} x^{2}+1}\, x c +c^{2} x^{2}-1\right ) \left (\arcsin \left (c x \right )^{2}-2-2 i \arcsin \left (c x \right )\right )}{2 c^{2} d \left (c^{2} x^{2}-1\right )}\right )+2 a b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c^{2} x^{2}-i \sqrt {-c^{2} x^{2}+1}\, x c -1\right ) \left (\arcsin \left (c x \right )+i\right )}{2 c^{2} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i \sqrt {-c^{2} x^{2}+1}\, x c +c^{2} x^{2}-1\right ) \left (\arcsin \left (c x \right )-i\right )}{2 c^{2} d \left (c^{2} x^{2}-1\right )}\right )\) \(316\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-a^2/c^2/d*(-c^2*d*x^2+d)^(1/2)+b^2*(-1/2*(-d*(c^2*x^2-1))^(1/2)*(c^2*x^2-I*(-c^2*x^2+1)^(1/2)*x*c-1)*(arcsin(
c*x)^2-2+2*I*arcsin(c*x))/c^2/d/(c^2*x^2-1)-1/2*(-d*(c^2*x^2-1))^(1/2)*(I*(-c^2*x^2+1)^(1/2)*x*c+c^2*x^2-1)*(a
rcsin(c*x)^2-2-2*I*arcsin(c*x))/c^2/d/(c^2*x^2-1))+2*a*b*(-1/2*(-d*(c^2*x^2-1))^(1/2)*(c^2*x^2-I*(-c^2*x^2+1)^
(1/2)*x*c-1)*(arcsin(c*x)+I)/c^2/d/(c^2*x^2-1)-1/2*(-d*(c^2*x^2-1))^(1/2)*(I*(-c^2*x^2+1)^(1/2)*x*c+c^2*x^2-1)
*(arcsin(c*x)-I)/c^2/d/(c^2*x^2-1))

________________________________________________________________________________________

Maxima [A]
time = 0.51, size = 130, normalized size = 0.89 \begin {gather*} 2 \, b^{2} {\left (\frac {x \arcsin \left (c x\right )}{c \sqrt {d}} + \frac {\sqrt {-c^{2} x^{2} + 1}}{c^{2} \sqrt {d}}\right )} + \frac {2 \, a b x}{c \sqrt {d}} - \frac {\sqrt {-c^{2} d x^{2} + d} b^{2} \arcsin \left (c x\right )^{2}}{c^{2} d} - \frac {2 \, \sqrt {-c^{2} d x^{2} + d} a b \arcsin \left (c x\right )}{c^{2} d} - \frac {\sqrt {-c^{2} d x^{2} + d} a^{2}}{c^{2} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

2*b^2*(x*arcsin(c*x)/(c*sqrt(d)) + sqrt(-c^2*x^2 + 1)/(c^2*sqrt(d))) + 2*a*b*x/(c*sqrt(d)) - sqrt(-c^2*d*x^2 +
 d)*b^2*arcsin(c*x)^2/(c^2*d) - 2*sqrt(-c^2*d*x^2 + d)*a*b*arcsin(c*x)/(c^2*d) - sqrt(-c^2*d*x^2 + d)*a^2/(c^2
*d)

________________________________________________________________________________________

Fricas [A]
time = 2.41, size = 147, normalized size = 1.01 \begin {gather*} -\frac {2 \, \sqrt {-c^{2} d x^{2} + d} {\left (b^{2} c x \arcsin \left (c x\right ) + a b c x\right )} \sqrt {-c^{2} x^{2} + 1} + {\left ({\left (a^{2} - 2 \, b^{2}\right )} c^{2} x^{2} + {\left (b^{2} c^{2} x^{2} - b^{2}\right )} \arcsin \left (c x\right )^{2} - a^{2} + 2 \, b^{2} + 2 \, {\left (a b c^{2} x^{2} - a b\right )} \arcsin \left (c x\right )\right )} \sqrt {-c^{2} d x^{2} + d}}{c^{4} d x^{2} - c^{2} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

-(2*sqrt(-c^2*d*x^2 + d)*(b^2*c*x*arcsin(c*x) + a*b*c*x)*sqrt(-c^2*x^2 + 1) + ((a^2 - 2*b^2)*c^2*x^2 + (b^2*c^
2*x^2 - b^2)*arcsin(c*x)^2 - a^2 + 2*b^2 + 2*(a*b*c^2*x^2 - a*b)*arcsin(c*x))*sqrt(-c^2*d*x^2 + d))/(c^4*d*x^2
 - c^2*d)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*asin(c*x))**2/(-c**2*d*x**2+d)**(1/2),x)

[Out]

Exception raised: TypeError >> Invalid comparison of non-real zoo

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)^2*x/sqrt(-c^2*d*x^2 + d), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x\,{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2}{\sqrt {d-c^2\,d\,x^2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a + b*asin(c*x))^2)/(d - c^2*d*x^2)^(1/2),x)

[Out]

int((x*(a + b*asin(c*x))^2)/(d - c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________